\(\int x^2 \text {arccosh}(a x) \, dx\) [3]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 8, antiderivative size = 65 \[ \int x^2 \text {arccosh}(a x) \, dx=-\frac {2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a^3}-\frac {x^2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a}+\frac {1}{3} x^3 \text {arccosh}(a x) \]

[Out]

1/3*x^3*arccosh(a*x)-2/9*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^3-1/9*x^2*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5883, 102, 12, 75} \[ \int x^2 \text {arccosh}(a x) \, dx=-\frac {2 \sqrt {a x-1} \sqrt {a x+1}}{9 a^3}+\frac {1}{3} x^3 \text {arccosh}(a x)-\frac {x^2 \sqrt {a x-1} \sqrt {a x+1}}{9 a} \]

[In]

Int[x^2*ArcCosh[a*x],x]

[Out]

(-2*Sqrt[-1 + a*x]*Sqrt[1 + a*x])/(9*a^3) - (x^2*Sqrt[-1 + a*x]*Sqrt[1 + a*x])/(9*a) + (x^3*ArcCosh[a*x])/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 75

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 5883

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcC
osh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt
[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} x^3 \text {arccosh}(a x)-\frac {1}{3} a \int \frac {x^3}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx \\ & = -\frac {x^2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a}+\frac {1}{3} x^3 \text {arccosh}(a x)-\frac {\int \frac {2 x}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx}{9 a} \\ & = -\frac {x^2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a}+\frac {1}{3} x^3 \text {arccosh}(a x)-\frac {2 \int \frac {x}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx}{9 a} \\ & = -\frac {2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a^3}-\frac {x^2 \sqrt {-1+a x} \sqrt {1+a x}}{9 a}+\frac {1}{3} x^3 \text {arccosh}(a x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.71 \[ \int x^2 \text {arccosh}(a x) \, dx=-\frac {\sqrt {-1+a x} \sqrt {1+a x} \left (2+a^2 x^2\right )}{9 a^3}+\frac {1}{3} x^3 \text {arccosh}(a x) \]

[In]

Integrate[x^2*ArcCosh[a*x],x]

[Out]

-1/9*(Sqrt[-1 + a*x]*Sqrt[1 + a*x]*(2 + a^2*x^2))/a^3 + (x^3*ArcCosh[a*x])/3

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.60

method result size
parts \(\frac {x^{3} \operatorname {arccosh}\left (a x \right )}{3}-\frac {\sqrt {a x -1}\, \sqrt {a x +1}\, \left (a^{2} x^{2}+2\right )}{9 a^{3}}\) \(39\)
derivativedivides \(\frac {\frac {a^{3} x^{3} \operatorname {arccosh}\left (a x \right )}{3}-\frac {\sqrt {a x -1}\, \sqrt {a x +1}\, \left (a^{2} x^{2}+2\right )}{9}}{a^{3}}\) \(43\)
default \(\frac {\frac {a^{3} x^{3} \operatorname {arccosh}\left (a x \right )}{3}-\frac {\sqrt {a x -1}\, \sqrt {a x +1}\, \left (a^{2} x^{2}+2\right )}{9}}{a^{3}}\) \(43\)

[In]

int(x^2*arccosh(a*x),x,method=_RETURNVERBOSE)

[Out]

1/3*x^3*arccosh(a*x)-1/9/a^3*(a*x-1)^(1/2)*(a*x+1)^(1/2)*(a^2*x^2+2)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.80 \[ \int x^2 \text {arccosh}(a x) \, dx=\frac {3 \, a^{3} x^{3} \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right ) - {\left (a^{2} x^{2} + 2\right )} \sqrt {a^{2} x^{2} - 1}}{9 \, a^{3}} \]

[In]

integrate(x^2*arccosh(a*x),x, algorithm="fricas")

[Out]

1/9*(3*a^3*x^3*log(a*x + sqrt(a^2*x^2 - 1)) - (a^2*x^2 + 2)*sqrt(a^2*x^2 - 1))/a^3

Sympy [F]

\[ \int x^2 \text {arccosh}(a x) \, dx=\int x^{2} \operatorname {acosh}{\left (a x \right )}\, dx \]

[In]

integrate(x**2*acosh(a*x),x)

[Out]

Integral(x**2*acosh(a*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.74 \[ \int x^2 \text {arccosh}(a x) \, dx=\frac {1}{3} \, x^{3} \operatorname {arcosh}\left (a x\right ) - \frac {1}{9} \, a {\left (\frac {\sqrt {a^{2} x^{2} - 1} x^{2}}{a^{2}} + \frac {2 \, \sqrt {a^{2} x^{2} - 1}}{a^{4}}\right )} \]

[In]

integrate(x^2*arccosh(a*x),x, algorithm="maxima")

[Out]

1/3*x^3*arccosh(a*x) - 1/9*a*(sqrt(a^2*x^2 - 1)*x^2/a^2 + 2*sqrt(a^2*x^2 - 1)/a^4)

Giac [F(-2)]

Exception generated. \[ \int x^2 \text {arccosh}(a x) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2*arccosh(a*x),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int x^2 \text {arccosh}(a x) \, dx=\int x^2\,\mathrm {acosh}\left (a\,x\right ) \,d x \]

[In]

int(x^2*acosh(a*x),x)

[Out]

int(x^2*acosh(a*x), x)